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I. Introduction

Simulating the flight of an aerospace vehicle has many important applications, including rehearsing

mission profiles, refining feedback control or estimation algorithms, and assessing risks in launch trajectories.

These computer simulations are often run in a Monte Carlo environment, where random noise sequences are

used to systematically introduce uncertainties into the model. Some examples of noise sequences include

measurement noise on sensor outputs, atmospheric turbulence, model structure error from ignored physics,

and drift in clock rates or calibration parameters.

Because insights gained from simulation analyses can have significant impact, it is important to use

accurate tools for noise generation. As an example, sensor outputs are often modeled as having zero-mean

additive measurement noise and a random bias. If the simulated measurement noise is not zero-mean, then

the non-zero mean then becomes confounded with the bias, which may mislead the interpretation of results

in extreme cases.

The standard method for generating random noise sequences is to query a (pseudo) random number

generator algorithm, which produces a sequence from a uniform distribution. True random number generators

can also be used, but are less suitable for Monte Carlo simulation due to hardware costs and latencies in

generating potentially many and large sequences of random numbers [1]. The random sequence is then

mapped to the desired distribution, passed through coloring or shaping filters to tailor the power spectrum

(called spectral factorization), and then scaled to the desired level.

A different method for noise generation was proposed in Ref. [2], which is referred to here as the Lanczos

method. After subjecting many sequences from different random number generators to Fourier analysis, the

authors hypothesized that a Gaussian “ideal white noise pattern” could be synthesized, using the Fourier

series, by summing harmonic sinusoids with constant amplitudes and random phase angles drawn from a

uniform distribution. By extension, the spectral coloring of the noise could be designed by appropriate

selection of the sinusoid amplitudes. This idea has also been mentioned by others, but is often limited to

introductory descriptions, obscured in rigorous mathematical treatments, or mentioned informally in online
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forums [3–6].

This Note describes the Lanczos method for noise generation, as reported in Ref. [2], and presents

applications for aircraft simulation. Comparisons are made with conventional methods of noise generation,

and it is shown that the noise sequences generated using the Lanczos method most often have more accurate

statistical characteristics than those generated using the standard methods. Although the standard methods

already produce high-quality noise sequences, using the Lanczos method to generate noise, when applicable,

can realize a more accurate representation of the desired noise, and therefore lead to clearer insights into

simulation analyses. It is hoped that others may find this description of the noise generation procedure and

these simulation examples interesting and helpful for their own uses.

II. Method

The strategy for constructing Gaussian noise sequences, as described in Ref. [2], is to combine many

harmonic sinusoids having specified amplitudes and uniformly-distributed phase angles. To do this, define

N =
T

∆t
+ 1 (1)

samples at the times

ti = (i− 1)∆t, for i = 1, 2, . . . , N (2)

where T is the data record length, ∆t is the sampling period, and i is the time index. The harmonic

frequencies of the record are

fk =
k

T
, for k = 1, 2, . . . , N/2 (3)

where k is the integer harmonic number. The noise sequence is then synthesized as the Fourier series

v(ti) =
c0
2

+

N/2∑
k=1

ck sin (2πfkti + φk) (4)

where ck is the amplitude spectrum and φk is the phase spectrum. The bandwidth of the sequence is bounded

by the fundamental frequency 1/T and the Nyquist frequency N/2T . The harmonic sinusoid basis functions

in the Fourier series are a natural choice for describing the noise because of their mutual orthogonality and

because of the intuitive concepts of frequency, bandwidth, and power.

The ck values are selected according to the desired power spectrum. For example, white noise has equal

values, or Brownian noise has values proportional to f−2
k . The amplitudes could instead be chosen to match

empirical data observed from experiment. Setting any values of ck to zero removes power from the noise

at that frequency, similar to applying an ideal band-stop filter to the sequence. Whereas coefficient values
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in a coloring filter can be adjusted during the simulation, the Fourier approach generally restricts ck and

φk values to remain constant in time over the record length. The bias term c0 is included to offset any

numerical round-off errors and yield a zero-mean sequence. The φk values are drawn randomly from a

uniform distribution over the interval [0, 2π).

III. Examples

This section presents three examples for generating noise sequences using the Lanczos method. The first

example is a unit-variance white noise sequence to be scaled and added to sensor outputs as measurement

noise. The second example is colored noise for representing unmodeled dynamics, both from a qualitative

perspective and using experimental data. The last example is the simulation of atmospheric turbulence using

the von Kármán model. Examples using standard methods of noise generation are also given for comparison.

III.A. Measurement Noise

White noise is a zero-mean, normally-distributed, uncorrelated random sequence with constant power

over frequency. This type of noise is often applied as measurement noise to corrupt sensor outputs, or is

input to a shaping filter to create colored noise. Measurement noise can be constructed using Fourier series

by selecting equal values for the amplitude spectrum. A unit-variance signal can be formed by selecting

ck = 2/
√
N , or by normalizing the sequence by its sample variance [7]. The Lanczos method creates noise

sequences with zero mean automatically because all harmonic sinusoids have an integer number of cycles

within the record length and because c0 removes any non-zero mean due to small numerical round-off errors.

Two realizations of a unit-variance measurement noise sequence, 10 s in duration and sampled at 50 Hz

(N = 501), were generated and are shown in Fig. 1. The first sequence was created using the Lanczos method.

Phase angles were drawn using the rand.m function in MATLAB R©, which implements the Mersenne-Twister

algorithm for generating random numbers. Here 250 sinusoids were combined, each with ck = 0.0894. The

second sequence was generated in a more conventional manner using the randn.m function, which also uses

the Mersenne-Twister algorithm and applies the Ziggurat algorithm for achieving a normal distribution.

The first sequence had sample mean and variance of +0.0000 and 1.0000, whereas the second sequence had

+0.1369 and 1.0375. In terms of the desired mean and variance (0 and 1), the sequence generated using

the Lanczos method was more accurate. Although this example shows only one realization of the noise

sequences, Monte Carlo analysis in Ref. [7] suggests this result (and others shown later) is representative of

the methods.

As described in Refs. [2,8], the phase distribution of noise is random and assumed to resemble a uniform

distribution. One way to view the distribution of phase angles is the empirical cumulative distribution
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Figure 1. Measurement white noise sequences

function (CDF). There are other methods, but these typically require analyst judgment, for example choosing

bin sizes in a histogram. For a uniform distribution, the CDF is a straight line, and any large or systematic

deviations from a straight line indicate a different distribution. The noise sequences in Fig. 1 were first

transformed into the frequency domain using a high-accuracy Fourier transform [9]. The phase angles were

then computed, sorted, and ordered to form the empirical CDFs, as shown in Fig. 2. Both sequences

followed the theoretical line reasonably well, with R2 values of 0.99 and 0.98 for sequences constructed using

the Lanczos method and standard method, respectively. For the standard method, phase angles were slightly

underrepresented in the first three quadrants, but for the Lanczos method, this was not the case. Overall,

these phase angles represented uniform distributions well.
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Figure 2. Cumulative distribution functions of the measurement noise phase angles

Another characteristic of white noise, the absence of serial correlations in time, can be examined using

the sample autocorrelation function

Rvv(l) =
1

N

N−l∑
i=1

v(i)v(i+ l), for l = 0, 1, 2, . . . , N − 1 (5)
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where l is the lag index. For white noise, the autocorrelation should be statistically zero at all lag values

except l = 0, where it equals the sample variance. Figure 3 shows the autocorrelation of the two measurement

noise sequences from Fig. 1. The autocorrelation of the sequence constructed using the Lanczos method was

0.9980 at l = 0, which was close to the desired value of 1, and all other values remained within the 2σ bound,

computed from [9]

s[Rvv(l)] =
rvv(0)√
N

= 0.0447, for l 6= 0 (6)

The second sequence was 1.0542 at l = 0, had 22 values (2.2% of the total samples) beyond the 2σ bound,

and in general had larger values of autocorrelation at all lag values. The sequence generated using the

Lanczos method was less correlated with lagged versions of itself than that generated using the standard

method, and was therefore more representative of white noise.
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Figure 3. Autocorrelations of the measurement noise sequences

The power spectrum of white noise is constant with frequency. One way to estimate the power spectrum

is with the one-sided periodogram [10]

Gvv(jωk) =
2

T
|v(jωk)|2 (7)

where j =
√
−1, ωk = 2πfk, and v(jωk) represents the Fourier transform of v(ti). Power spectral density

estimates for the two noise sequences in Fig. 1 are shown in Fig. 4. For harmonic data having integer

numbers of cycles, such as the noise sequence constructed using the Lanczos method, the periodogram is

an accurate representation of the power spectrum. Equation (7) was evaluated at the harmonic frequencies

fk. Note that because the Fourier series is a collection of sinusoids at discrete frequencies, there is no power

at frequencies that are non-integer multiples of 1/T . The power spectrum for the Fourier-based sequence,

shown in Fig. 4(a), was within machine precision of the desired value of 0.04 at all frequencies, and therefore

was a good representation of white noise.

For generic sequences with continuous power spectra, the periodogram method produces estimates with

large errors [11]. To reduce that error for the second signal, the Fourier transform was computed at a
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frequency resolution five times finer than before, and the binning method [9] was applied. This resulted

in the same frequency resolution on the power spectrum, but with five times less error than would have

resulted using the normal periodogram method. The resulting spectral estimate for the second sequence,

shown in Fig. 4(b), had more scatter about the desired value of 0.04, but on average (over frequency) was

as accurate as the Lanczos method. Therefore, both sequences seem to be good at achieving a flat power

spectrum, considering that some additional averaging was needed for viewing the power spectrum of the

second sequence. Note however that the autocorrelation and power spectral density are Fourier transform

pairs and the autocorrelation of the Fourier-based sequence was more accurate, so it is likely that this

sequence also has a more accurate power spectrum. This was to be expected because the Lanczos method

prescribes the power spectrum for the noise, and because the method used for analysis was matched to the

way that the Lanczos method generates the random sequence.
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Figure 4. Power spectral density estimates of the measurement noise sequences

Whereas the Ziggurat algorithm was used to explicitly map the uniform distribution to a normal dis-

tribution for the standard method, the Lanczos method relies on the central limit theorem for justification

in achieving a normal distribution — if enough sinusoids are combined, the distribution tends toward a

Gaussian. Results in Ref. [7] indicated that about 50 sinusoids (or 2 s of data sampled at 50 Hz) were needed

on average to achieve a normal distribution within 1% error, which seems relatively efficient. To check the

normality of the two noise sequences, probability plots [12] were constructed. Given a desired distribution,

probability plots map sequences to straight lines, so that any deviation from the line, and therefore from the

distribution, can be visualized more easily. Figure 5 shows this transformation for the noise sequences in

Fig. 1. Except for small variations in the standard method, both plots follow the lines relatively well, with R2

values of 0.9980 and 0.9779 for the Lanczos method and standard method, respectively. The small amounts

of variation near the ends are typical of distributions with tails that decrease to zero [12]. Therefore, both

sequences were described well by a normal distribution.

In this example, two measurement noise sequences, modeled as unit-variance white noise, were compared.

Both the sequence constructed using the Fourier series and the sequence generated from a conventional
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Figure 5. Normal probability plots of the measurement noise sequences

method were of good quality. However, the Fourier-based method produced sequences with more accurate

sample means, variances, and autocorrelations. A direct comparison of the power spectra of the signals was

not possible, but it appears both were good representations of white noise in this regard, as well as with

respect to the normality of the sequences.

III.B. Unmodeled Dynamics

Discrepancies between simulation data and flight test data usually contain some deterministic content

from unmodeled physics. Examples include cross-axis coupling, structural or slosh dynamics, and unsteady

aerodynamics. These effects can be represented by adding colored noise to the simulation outputs, which

was done in Refs. [13,14] by filtering white noise with a fifth-order, low-pass, Chebyshev filter which passed

frequencies near the rigid-body modes. Unmodeled dynamics can also be simulated using Fourier series by

combining multiple white noise sequences having different amplitudes and bandwidths to mimic different

physical phenomena.

A colored noise example, used to simulate measurements from an angle of attack vane on a subscale

airplane [15], is shown in Fig. 6 with T = 10 s and N = 501. The power spectrum of the noise is shown

in Fig. 6(a), where the different lines indicate different physical sources. Content from 0–2 Hz represents

unmodeled low-frequency dynamics near the rigid-body modes, power at 7 Hz represents the first bending

mode of an air-data boom, and wide-band content up to the 25 Hz Nyquist frequency represents measurement

noise. These components have amplitudes corresponding to 14%, 6%, and 7% of the variation in the angle

of attack time history, respectively. Noise levels and bandwidths can be selected from intuition and past

experience, curve fit from experimental data, taken from manufacturer data sheets, or determined using first

principles. In Fig. 6(b), the response in angle of attack α to a multistep elevator input is shown, as well as

7 of 13

American Institute of Aeronautics and Astronautics



the total simulated measurement αm and the generated noise sequence v.
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Figure 6. Simulated colored noise on an angle of attack vane measurement

Alternatively, realistic noise sequences can be realized by analogy with experimental modeling data.

Figure 7(a) shows angle of attack measurements from a longitudinal maneuver of the F-18 High Alpha

Research Vehicle (HARV), included with Ref. [16], where T = 14 s and N = 701. The modeling residual

ν for the angle of attack resulting from an output-error analysis [9] is shown in Fig. 7(b) as a time history

and in Fig. 7(c) as a power spectral density. The spectrum illustrates the noise floor, power in the low

frequencies near the rigid-body modes, and power between 6–14 Hz due to structural bending in the airdata

boom. By decomposing this modeling residual into a Fourier series matching the component amplitudes,

randomizing the phase angles, and then recombining the sinusoids, many different and authentic realizations

of this colored noise sequence can be generated. One realization is shown in Fig. 8, which looks similar in

character to the original sequence in Fig. 7(b). The power spectrum of this realization, shown in Fig. 8(b),

is practically identical to the experimental data in Fig. 7(c) used for its generation, as expected.
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Figure 7. HARV flight test and modeling data
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Figure 8. A realization of colored noise generated from HARV modeling data

III.C. Atmospheric Turbulence

Military specifications prescribe power spectra of atmospheric turbulence models for flight dynamics

simulations and recommend using the von Kármán model for best realism. However, this model includes

irrational polynomials that can not be directly factored into coloring filters for spectral factorization. Conse-

quently, the Dryden model is often used, although it is less representative of observed turbulence data. Other

approaches for using the von Kármán model include curve fitting the power spectrum [17], discretizing the

power spectra using a small number of sinusoids [18], and using Fourier transforms to apply the irrational

coloring filters in the frequency domain [19].

The power spectrum of the von Kármán model for the vertical gust velocity w is [20]

Φww(jω) =
σ2L

πV

1 + 8
3 (1.339Lω/V )

2[
1 + (1.339Lω/V )

2
]11/6 (8)

where V is the trim airspeed, σ is the turbulence intensity, and L = 2500 ft for the turbulence length scale

at medium/high altitudes. The Lanczos method can be used to create these gust sequences by selecting the

sinusoid amplitudes as

ck =
√

2∆ω Φww(jωk) (9)

where ∆ω = 2π/T is the angular frequency resolution of the Fourier series and where Φww(jωk) are evalua-

tions of Eq. (8) at the harmonic frequencies. For comparison with spectral factorization, the coloring filter
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having the frequency response [17]

Hw(jω) = σ

√
L

πV

1 + 2.7478
(
L
V

)
jω − 0.3398

(
L
V

)2
ω2

1 + 2.9958
(
L
V

)
jω − 1.9754

(
L
V

)2
ω2 − 0.1539

(
L
V

)3
jω3

(10)

was used, where s is the Laplace variable. Equation (10) is based on a curve-fitted approximation to the von

Kármán power spectrum using rational polynomials.

Two turbulence sequences were generated using the Lanczos method and spectral factorization, and are

shown in Fig. 9. The data record length was selected as T = 500 s (N = 25001) in order to examine low

frequencies below the “knee in the curve;” however, only 100 s of the sequences are shown here for clarity. The

airspeed and altitude for defining the turbulence power spectra were V = 130 ft/s and 2000 ft, respectively,

which could correspond to the flight of a subscale aircraft [15]. The two sequences look qualitatively similar

to each other. The estimated power spectral densities are shown in Fig. 10. The periodogram shows the

Fourier-based sequence has power exactly on the model spectrum. The binning method was again applied

to the sequence generated using spectral factorization to reduce error, and these results generally follow

the model spectrum, but not as clearly as with the Lanczos method and the periodogram. These results

may look different for other methods of spectral estimation, for example using windowing and averaging

techniques [10].
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Figure 9. Turbulence sequences (100 s shown of the simulated 500 s)

IV. Conclusions

A simple method for generating Gaussian noise sequences with arbitrary power spectra was discussed.

The method uses the Fourier series, where the amplitude spectrum is assigned according to the desired power

spectra, and phase angles are drawn randomly from a uniform distribution.

The method was demonstrated using three examples. White noise was used to mimic measurement

noise on simulation outputs and was shown to have accurate mean, standard deviation, autocorrelation,

and power spectra, and was representative of a normal distribution. Colored noise was used to simulate
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Figure 10. Power spectral densities of the turbulence sequences

wide-band measurement noise, unmodeled low-frequency dynamics, air-data boom flex mode dynamics, and

experimental data. Colored noise, with power spectra defined by the von Kármán model, was also used to

simulate atmospheric turbulence.

The advantage of the proposed method is that random processes having arbitrary power spectra can be

generated accurately, as viewed in both the time and frequency domains. The resulting noise sequences are

more precisely realized and therefore are of higher quality than noise sequences constructed with traditional

methods using spectral factorization. Generating random noise sequences in this way can lead to fewer

Monte Carlo simulations, more realistic simulation, and less uncertainty in evaluating results and making

decisions on mission risk.
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